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We are examining the iterative solution of problems of elasticity by using a sandwich of layers to represent the region 
in which we seek the solution. We will use the layer equations in [1-3], the order of these equations being independent of the 

conditions for the displacements and stresses on the surfaces of the layers. The number of layers is successively doubled 
during the iteration. In the first approximation, the region is represented in the form of a single layer. 

As examples, we will model the stress state near a slit and edge effects in the stress state of elastic layers between 
rigid slabs. 

1. Equations of a Layer. We use the equations of a layer in the first approximation [1] below. In their derivation, 
the equations of the two-dimensional problem of the theory of elasticity 
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are approximated by the equations [1, 2] 
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Here, L and h 2 are the length and thickness of the layer; x = x2~ is the middle surface of the layer; ai + and bi + are con- 

stants satisfying the conditions ai+bi + _> 0 and a i - b  i -  _< 0; ci + and di + are piecewise-constant functions equal to zero or 

unity; ri+(x2), gi(xl), and fi(xl, x 2) are assigned functions; Pk represents Legendre polynomials in g'; k is the degree of each 
polynomial; the symbol ( )k denotes the k-th coefficient of the Legendre-polynomial expansion. In plane-strain problems 
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while in problems concerning a plane stress state 
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(E is the elastic modulus and v is the Poisson's ratio). 

The functions aij(L) and ui(k) in (1.2)-(1.4), whose derivatives with respect to x 1 are contained in (1.2), will be condi- 

tionally referred to as the main functions. All other aij (L) and ui(k) will be called auxiliary functions. The main functions are 

o l,  o , l ,  a n ,  u l,  u , ,  u 1, ( 1 . 5 )  

where h2trll (0), h2tr21(~ , and (2/3)h22trll (1) are the forces and bending moment in the sections of  the layer; Ul(~ u2(~ and 
ul(1)/h 2 are the displacements averaged over the thickness of the layer and the angle of rotation of the sections. 

The solution of Eqs. (1.2)-(1.3) reduces to the integration of a system of sixth-order differential equations for the 
main functions. The general solution of this system was presented in [3] for different types of conditions on the surfaces of 

the layer. Use of the general solution together with boundary conditions (1.4) makes it possible to obtain the solution to a 
wide range of problems - including contact problems [2, 3] - that satisfy all of the continuity conditions for the forces, 

moments, displacements, and angles of rotation at the boundaries of the sections, with different conditions for the stresses and 
displacements on the surfaces of the layer as a whole. 

The system of differential equations in the main functions (I .5), being of the same order regardless of  the conditions 

for the displacements and the stresses on the surfaces of the layer, can be obtained by means other than Eqs. (1.2). For 
example, the system can be obtained by the methods described in [4]. 

2. Stiffness Matr ix  of an Element of the Layer .  Let us examine an element of the layer - 1  _< ~ _< 1, /j = 

(2/hl)(X 1 - -  Xl~ where h 1 is the length of the element and Xl ~ is the coordinate of its middle. We designate 
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Replacing the main functions in (1.2) by the half-sum of their values for ~ = - 1 and 1 and replacing the derivatives 

with respect to x 1 by the difference of these values divided by h 1, we obtain a system of algebraic equations in the quantities 

(2.1), (2.2) if we assume that the auxiliary functions are constant within the element. This system can be solved for Ti: 

% = AikU k + F , , i =  1 , 2 , 3 , 4 .  

The matrices Aik form the symmetric positive-definite stiffness matrix K of  the element: 

IT 1, T v T 3, T4 ]r ---- [KIIU l, U 2, U 3, U4I" + F. (2.3) 

Another method of obtaining Eqs. (2.3) was presented in [5]. 

3. Algebra ic  Equat ions  of  the Sandwich.  Let the region in which we are seeking the solution to the two-dimension- 

al elastic problem be a rectangle. We will examine it as a sandwich of M layers, each of which consists of N elements (Fig. 

la). Figure ib  shows the numeration of  the elements and their sides. The quantities in (2.1)-(2.2) that pertain to the element 

(n - 1/2, m - 1/2) will be designated by the subscript n - 1 / 2  and superscript m - 1 / 2 .  We also introduce the notation: 

Un m-l/2 / I f  ~rn-l/2 fU ~m-l/2 l ira- l /2  m {II ,~rn-l/2 U~ '-~'2 = (U3)~',~ ''2, = , -~ , , -1 , ,  = , 3, ,+~2,-, ,+~ ,-,,N§ , 

n = 2 ..... N , m  = 2 ..... M + I ,  
U 1 = -1/2 U "  = (U ~m-1/2 (U ~m+l/2 11~+1/2 = (U ~M+I/2 

n - l / 2  ( U 4 ~ n - l / 2 S  n - l / 2  s. 2 i n _ l / 2  ~ x 4 , ~ n - 1 / 2  ~ - - n - - l / 2  ', 2 / . - - 1 / 2  ~ 

n = 2 ..... N + l , m  = 2 ..... M. 

The conditions of continuity of the forces and moments at the interfaces of adjacent elements 
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T ~,,-I/2 + (T h,,,-l/2 = 0, n = 2 ..... N, m = 2 ..... M + I "  
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conditions that follow from (1.3), 
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form a system of algebraic equations in Un m-l/2, U~n_i/2 - the vectors of the displacements of the sides of the elements 

marked in Fig. la by " x "  and "(3 ", respectively. 

Equations (3.1)-(3.4) are Euler's equations for a positive-definite quadratic energy functional. It can be shown that 

when N, M ---> oo and the linear dimensions of the elements simultaneously approach zero, the solution of system (3.1)-(3.4) 

converges in the energy norm to the solution of the two-dimensional problem of the theory of elasticity. The procedure that 

will be described below for the iterative solution of Eqs. (3.1)-(3.4) can be interpreted as the process of successive minimiza- 

tion of the energy functional. 

4. Iterative Solution of  the Equations of the Sandwich. The sequence (U~n_l/2) k, ~ n - l / 2 )  k, k = 1, 2, which 

minimizes the energy functional, is constructed as follows. Let the vectors (U~n_l/2) k be known. Then the vectors (U~n-l/2) k 

are found as the solution of Eqs. (3.1), (3.3-3.4). Here, the system decomposes into M independent systems in the quantities 

U n = (I-~n-1/2)k, n = 1 ..... N + 1, m = 2 ..... M + 1, each of which can be written in the form 

A,,U,_ t + B U, + C U .  l = F ,  n ffi 2 ..... N, 

B1U~ + C1U2 = Fv AN.~UN + Bn.~UN+~ = FN+r (4.1) 

Equations (4.1) can be solved by the method of  matrix trial run. The resulting vectors (WnWm-1/2) k and (U~n_l/2) k satisfy 

Eqs. (3.1), (3.3)-(3.4) but cannot satisfy Eqs. (3.2). The errors of Eqs. (3.2) Qn_l/2 m = (T2)n_i/2 m-1/2 -4- (T4)n_l/2 m+l/2 

represent concentrated forces on the sides of the elements at the interfaces: The vectors (U~nn_l/2) k+l are found from the 

equations Qm_l/2 = 0. In these equations, we set Urnn_l/2 = (Umn_l/2) k+l, Un m-l/2 = (Unm-l/2) k. 
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TABLE 1 

Iteration r 

',6425 4,1991 3,0580 
',5348 4,1801 3,0124 
,4221 4 ,1443  2,9698 
',3934 4 ,1288 2,9580 
,3724 4 ,1162  2,9489 
',3436 4 ,0980 2,9361 
.3329 4 ,0913 2.9315 

0,2909 
0,1075 
0,2469 
0,1497 
0,1061 
0.0817 
0,0483 

In specific numerical calculations, the iterations were continued until the largest error for the region Qnm_l/2, referred 

to the characteristic stress, became less than a preassigned number e. We began calculating the solution with the region 

represented in the form of a single layer consisting of N elements. We then successively doubled the number of layers by 

dividing each layer by two. When the region was represented as a sandwich of 2M layers, we took as the zeroth approxima- 

tion for U~n_:/2 the corresponding values calculated for a sandwich of M layers. 

4. Examples  of  Solution of Two-Dimensional Elastic Problems by the Layers  Method .  The numerical solution of 

problems with singularities in the stress state is made somewhat difficult by the abrupt reduction in the rate of convergence 

in the neighborhood of  stress concentrations. Below, we present the results of numerical experiments involving the solution 

of such problems by the iteration method described above. 

Tension of  a Plane with a Slit. As one example of an iterative solution by the layers method, we examined the 

determination of the s t r e s s - s t r a in  state in a plane with a slit (Fig. 2a). The elastic space was cut along the segment - a  _< 

x 1 __ a, x 2 = 0. At infinity, o.22 = o., o.ll = ~ = 0. The problem has an analytic solution. In accordance with the latter, 

the stresses and displacements along the line x 2 = 0 are calculated from the formulas 

o. u o( l  v ) , D  2 Ix,! = . = - -  - -  X l / I . t ,  ~ e l ,  

The numerical solution was constructed in the rectangular region {0 < x 1 < L, 0 _< x 2 --. H} (Fig. 2a). Symmetry 

conditions were prescr ibedon the sections of the boundary AE and BC: a12 = u I = 0 on AE and a12 = u 2 = 0 on BC. On 

AB (the line of  the cut), we assumed that the normal and shear stresses were equal to zero. On sections ED and DC, we 

assigned the stresses and displacements as functions of the point of the boundary corresponding to the analytic solution. We 

began calculating the solution with representation of the region in the form of a single layer, then successively doubling the 

number of layers. We performed calculations with different numbers of finite elements in the direction of the x 1 axis and 

different linear dimensions for the elements in this direction. 

Some of the results of the numerical solution are shown in Fig. 2b. These results were obtained with L/L o = 5, 

H / L  o = 5, E / a  0 = 1, e o = aO/lZ, v = 0.3, a l a  o = 1, a 0 = 1, a / L  0 = 1, L 0 = 1. The dimensions of the finite elements in 

the x 1 direction are shown in Fig. 2a. The smallest elements were located near the edge of the slit and had a linear dimension 

of 0.04. In the numerical solution, we determined the stresses and displacements averaged over the boundaries of the 

elements. 

Figure 2b shows graphs of the mean (over the element boundaries) normal stresses a22 on a continuation of the cut 

line. The same figure also shows the mean normal displacements u 2 on this line. The t i t les  denote values corresponding to 

the analytic solution. The solid line represents the numerical solution obtained with division of the region into 32 layers. The 

dashed and dot-dash lines show the solutions for a region divided into 16 and 4 layers, respectively. With a 32-layer sand- 

wich, the mean normal stress on the lower boundary of an element adjacent to the slit differs 2.5% from the exact solution. 

Regardless of the number of  layers into which the region was divided, no more than seven iterations were required to ensure 

that the largest error in the region Off-:/2 did not exceed 0.05. 

Table 1 shows values of  the normal stresses on the lower boundaries of three adjacent elements next to the slit. Also 

shown is the maximum (for the region) error ~5 for a sequence of  seven iterations in the case of  a 32-layer region. The table 

gives an idea of  the rate of convergence. The results of the solution of the test problem show that the finite elements that 

were used satisfactorily describe the stress state in the neighborhood of the slit. 

940 



- 8  

b 

\ 
o 

a 

o 7 layer 
x 2 layers 
+ 4 layers 
o a layers 

I. 
7 e ~/2H 

Fig. 5 

Problems involving the study of stress states with singularities of the boundary-layer type are of great theoretical and 

practical interest. Such singularities arise (for example) near the free surface at the interface of layers of materials with 

different properties. Below, we solve two problems concerning edge effects in the stress state in elastic layers between rigid 

slabs. 
Problem of the Tension of an Elastic Interlayer. A interlayer of thickness 2H is placed in tension by perfectly rigid 

slabs (Fig. 3a). The normal displacements u 2 = +V are assigned on the surfaces of  the interface, while the tangential 

displacement is set equal to zero. A concentration of normal and shear stresses arises near the free surface (x 1 = 0) and may 

cause the interface to separate from the slabs. Figure 3b shows the distribution of the shear stresses along the surface x 2 = 

H of the interface. Figure 4 shows the normal stresses. The results in these figures were obtained with division of the 

interface into one, two, four, and eight layers. The distribution of the normal and shear stresses calculated for representation 

of the interface as a single layer was nearly the same as the distributions calculated for the multiple layers. 
Problem of the Shear  of an Elastic Interface. An interface of thickness 2H undergoes shear between two perfectly 

rigid slabs (Fig. 5a). The tangential displacements u 1 = + U  are assigned on the surfaces of the interface and the normal 

displacements are taken equal to zero. A concentration of normal and shear stresses develops near the free surface (x 1 = 0). 

Figure 5b shows the distribution of the normal stresses over the surface x 2 = H of the interface when it is divided into 

different numbers of layers (from one to eight). As in the previous problem, the normal stresses on the surface of the layer 

can be determined by representing it in the form of a single layer. 

These results, as well as the solutions of several other contact problems [2, 3], illustrate the efficiency of the layers 

method for studying edge effects in elastic interfaces and in other two-dimensional elastic problems with singularities in the 

stress state. 
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